Math 255B Lecture 8 Notes

Daniel Raban

January 24, 2020

1 Realizations of Partial Differential Operators

1.1 Maximal and minimal realizations

Last time, we considered the unbounded operator $T = -\Delta$ on $L^2(\mathbb{R}^n)$ with $D(T) = C_0^{\infty}(\mathbb{R}^n)$. We saw that $\overline{T} = -\Delta$ with domain $D(\overline{T}) = H^2(\mathbb{R}^n) = \{u \in L^2 : \Delta u \in L^2\}.$

Example 1.1. Let $\Omega \subseteq \mathbb{R}^n$ be open, and let $P = P(x, D_x)$ be a linear partial differential operator with C^{∞} coefficients:

$$P = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}, \qquad a_{\alpha} \in C^{\infty}, D_{x_j} = \frac{1}{i} \partial_{x_j}.$$

The operator P_{Ω} on $L^{2}(\Omega)$ with $D(P_{\Omega}) = C_{0}^{\infty}(\Omega)$ is densely defined and closable: if $u_{n} \in C_{0}^{\infty}(\Omega)$ with $u_{n} \xrightarrow{L^{2}} 0$ and $Pu_{n} \xrightarrow{L^{2}} v$, then v = 0. The closure of P_{Ω} , denoted by P_{\min} , is called the **minimal realization** of P_{Ω} with domain $D(P_{\min}) = \{u \in L^{2} : \exists u_{n} \in C_{0}^{\infty} \text{ s.t. } u_{n} \to u, Pu_{n} \text{ conv. in } L^{2}\}.$

If $u \in D(P_{\min})$, then $Pu \in L^2(\Omega)$, where Pu is defined in the sense of distributions. So $D(P_{\min}) \subseteq \{u \in L^2 : Pu \in L^2\}$. We also introduce the **maximal realization** P_{\max} of P_{Ω} , given by $D(P_{\max}) = \{u \in L^2 : Pu \in L^2\}$ with $P_{\max}u = Pu$ for all $u \in D(P_{\max})$. We get $P_{\Omega} \subseteq P_{\min} \subseteq P_{\max}$, meaning $D(P_{\Omega}) \subseteq D(P_{\min}) \subseteq D(P_{\max})$ and $P_{\max} = P_{\min}$ on $D(P_{\min})$. Both P_{\min} and P_{\max} are closed.

1.2 Realizations of order 1 partial differential operators with smooth coefficients

Proposition 1.1. Let $P = \sum_{k=1}^{n} a_k(x) D_{x_k} + b(x)$ be an operator of order 1 on \mathbb{R}^n with $a_k, b \in C^{\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ and $\nabla a_k \in L^{\infty}$. Then the minimal and the maximal realizations of P agree: $D(P_{\min}) = D(P_{\max})$.

Proof. Let $u \in D(P_{\max})$. We have to show that $u \in D(P_{\min})$; that is, we show there exists a sequence $u_n \in C_0^{\infty}(\mathbb{R}^n)$ such that $u_n \xrightarrow{L^2} u$ and $Pu_n \xrightarrow{L^2} Pu$. Notice first that if

 $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi = 1$ near 0 and $\chi_j(x) = \chi(jx)$ for j = 1, 2, ..., then $\chi_j u \xrightarrow{L^2} u$. We may write $P(\chi_j u) = \chi_j P u + [P, \chi_j] u$. The first term goes to P u in L^2 , and

$$[P,\chi_j] = (P \circ \chi_j - \chi_j P)u = \sum_{k=1}^n a_k(x) \frac{1}{j} (D_{x_k}\chi)(x/j) \xrightarrow{L^2} 0.$$

Thus, when proving that $u \in D(P_{\min})$ can be approximated by C_0^{∞} functions, we may assume that u has compact support.

Regularize u: Let $0 \leq \varphi \in C_0^{\infty}(\mathbb{R}^n)$ with $\int \varphi = 1$, let $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi(x/\varepsilon)$, and let $J_{\varepsilon}u = (u * \varphi_{\varepsilon})(x) \in C_0^{\infty}(\mathbb{R}^n)$. Then $J_{\varepsilon} \xrightarrow{L^2} u$. Compute:

$$P(I_{\varepsilon}u) = J_{\varepsilon}Pu + [P, J_{\varepsilon}]u$$

Since Pu is compactly supported and in L^2 , the first term goes to Pu in L^2 . Let's get rid of the *b* term:

$$[b, J_{\varepsilon}]u = \underbrace{b(J_{\varepsilon}u)}_{\to bu} - \underbrace{J_{\varepsilon}(bu)}_{bu} \xrightarrow{L^2} 0.$$

Since $[P, J_{\varepsilon}] = \sum [a_k D_{x_k}, J_{\varepsilon}] + [b, J_{\varepsilon}]$ it now suffices to show that $[a_k D_{x_k}, J_{\varepsilon}]u \to 0$ in L^2 for all $u \in L^2$. This is Friedrich's lemma.

Lemma 1.1 (Friedrich's lemma). Let $u \in L^2(\mathbb{R}^n)$ and $a_k \in C_0^{\infty}(\mathbb{R}^n)$. Then

$$[a_k D_{x_k}, J_{\varepsilon}] u \xrightarrow{L^2} 0$$

Proof. Observe first that if $u \in C_0^{\infty}(\mathbb{R}^n)$, then

$$[a_k D_{x_k}, J_{\varepsilon}]u = a_k D_{x_k}(J_{\varepsilon}u) - J_{\varepsilon}(a_k D_{x_k}u)$$

Since $a_k D_{x_k} u \in C_0^{\infty}$, the second term goes to $a_j D_{x_k} u$ in L^2 . The first term also goes to $a_k D_{x_k} u$ in L^2 . So this goes to 0.

It only remains to show that $||[a_k D_{x_k}, J_{\varepsilon}]u||_{L^2} \leq C||u||_{L^2}$ for $0 < \varepsilon \leq 1$ and $u \in C_0^{\infty}$. Compute

$$\begin{split} W_{\varepsilon}(x) &= [a_k D_{x_k}, J_{\varepsilon}] u(x) \\ &= a_k D_{x_k} \int u(y) \frac{1}{\varepsilon^n} \varphi\left(\frac{x-y}{\varepsilon}\right) - \int a_k(x-y) D_{x_k} u(x-y) \frac{1}{\varepsilon^n} \varphi\left(\frac{y}{\varepsilon}\right) \, dy \\ &= \int a_k(x) u(x-\varepsilon y) \frac{1}{\varepsilon} (D_k \varphi)(y) - \int a_k(x-\varepsilon y) \underbrace{(D_{x_k} u)(x-\varepsilon y)}_{=-1/\varepsilon D_{y_k} (u(x-\varepsilon y))} \varphi(y) \, dy \end{split}$$

Integrate by parts in the second integral.

$$= \int a_k(x)u(x-\varepsilon y)\frac{1}{\varepsilon}(D_{x_k}\varphi)(y) - \int a_k(x-\varepsilon y)u(x-\varepsilon y)D_k\varphi.$$

So we get

$$|W_{\varepsilon}(x)| \le C_a |u| * \varphi_{\varepsilon}.$$